Sains Malaysiana 54(7)(2025): 1823-1834
http://doi.org/10.17576/jsm-2025-5407-15
Peningkatan Prestasi
Fotomangkin dalam Degradasi Aseton menggunakan Filem Nipis Nanorod x-TiNb
(Enhanced
Photocatalytic Performance in Acetone Degradation using x-TiNb Nanorods
Thin Films)
MASLIANA MUSLIMIN1,*
& MOHAMMAD HAFIZUDDIN HJ JUMALI2
1Bahagian Teknologi Industri, Agensi Nuklear Malaysia, Bangi, 43000 Kajang,
Selangor, Malaysia
2Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Diserahkan: 21 Mac
2025/Diterima: 19 Mei 2025
Abstrak
Penyelidikan terhadap degradasi aseton menggunakan
fotomangkin TiO2 nanorod (TiO2NR) terdop Nb telah
dijalankan dalam kajian ini. Filem
nipis TiO2NR terdop Nb (x-TiNb) dengan kepekatan berbeza; 0.2 v/v%, 0.5 v/v%, 0.7 v/v% dan 1.0 v/v% dihasilkan menggunakan kaedah hidroterma pada suhu 170 °C selama 30 min. Analisisi FESEM menunjukkan peningkatan kepekatan Nb membawa kepada pembesaran diameter
nanorod. Ini akhirnya mengakibatkan kemusnahan struktur nanorod bagi sampel pada
kepekatan 1.0 v/v%. Analisis PL menunjukkan bahawa sampel x-TiNb menunjukkan
keamatan puncak yang lebih rendah berbanding dengan TiO2NR, kecuali
pada kepekatan 1.0 v/v%. Dapat dilihat peratus degradasi optimum bagi larutan
aseton sebanyak 60% berlaku bagi sampel pada kepekatan 0.5 v/v% dalam tempoh masa 240 min. Analisis
XPS menunjukkan kehadiran dua puncak utama Nb 3d5/2 dan Nb 3d3/2 masing-masing pada sekitar 207 eV dan 209.5 eV, yang
mengesahkan kewujudan Nb⁵⁺ dalam struktur TiO₂. Justeru,
dapat dinyatakan bahawa pendopan Nb telah membantu meningkatkan prestasi TiO2-NR
sebagai fotomangkin dalam proses degradasi aseton.
Kata kunci: Aseton; fotomangkin; Nb2O5; TiO2NR
Abstract
Research on acetone degradation using Nb-doped TiO2 nanorods (TiO2NR) photocatalyst was carried out in this study. Nb doped
TiO2NR (x-TiNb) thin films with different concentrations; 0.2
v/v%, 0.5 v/v%, 0.7 v/v%, and 1.0 v/v% were produced using the hydrothermal
method at a temperature of 170 °C for 30 min. FESEM analysis shows that
increasing the concentration of Nb leads to an increase in the diameter of the
nanorods. This ultimately resulted in the destruction of the nanorods structure
in the sample with a concentration of 1.0 v/v%. Except for a concentration of
1.0 v/v%, PL analysis shows that the x-TiNb sample exhibits a lower peak
intensity compared to TiO2NR. It can be seen that the optimal
percentage of acetone solution degradation is 60% occurs for the sample with a
concentration of 0.5 v/v% in 240 min duration time. There
was an increment in binding energy of Ti 2p for this sample by XPS analysis,
confirming the incorporation of Nb into the TiO2 crystal plane. Thus,
it can be stated that Nb doping has improved the performance of TiO2NR
as a photocatalyst in the acetone degradation process.
Keywords: Acetone; Nb2O5;
photocatalyst; TiO2NR
RUJUKAN
Akhter,
P., Arshad, A., Saleem, A. & Hussain, M. 2022. Recent development in
non-metal-doped titanium dioxide photocatalysts for different dyes degradation
and the study of their strategic factors: A review. Catalysts 12(11):
1331.
Ali, S., Razzaq, A., Kim,
H. & In, S.I. 2022. Activity, selectivity, and stability of earth-abundant
CuO/Cu2O/CuO-based photocatalysts toward CO2 reduction. Chemical
Engineering Journal 429: 131579.
Ben Jemaa, I., Chaabouni,
F., Presmanes, L., Thimont, Y., Abaab, M., Barnabe, A. & Tailhades, P. 2016.
Structural, optical and electrical investigations on Nb doped TiO2 radio-frequency
sputtered thin films from a powder target. Journal Material Science:
Material Electron 27: 13242-13248.
Bikash,
S., Sujit, K.D. & Bimal, K.S. 2016. Photoluminescence and photocatalytic
activities of Ag/ZnO metal-semiconductor heterostructure. Journal of
Physics: Conference Series 765: 012023.
Bbumba,
S., Kigozi, M., Karume, I., Kisiki Nsamba, H., Tochukwu Arum, C., Kiganda, I., Maximillian,
K., Nazziwa, R.A., Ssekatawa, J., Yikii, C.L. & Ntale, M. 2024. Enhanced
photocatalytic degradation of methylene blue and methyl orange dyes via
transition metal-doped titanium dioxide nanoparticles. Asian Journal of
Chemical Sciences 14(4): 17-41.
Caique, P., Machado,
D.O., Inara, F.F., Konrad, K., Jorg,
E.D., Marcelo, M.V. & Miriam, C.S.A. 2022. TiO2-Graphene
oxide nanocomposite membranes: A review. Separation and Purification
Technology 280: 119836.
Chen,
D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P.,
Zhang, R., Wang, L., Liu, H., Liu, Y. & Ruan, R. 2020. Photocatalytic
degradation of organic pollutants using TiO2-based photocatalysts: A review. Journal of
Cleaner Production 268: 121725.
Chen, Y. & Yu, Q. 2021. Research progress on
degradation of VOCs by metal ions doped titanium dioxide nanoparticles. Journal
Physics Conference Series 2021: 012063.
Chen, Z., Ye, Y., Feng, X.,
Wang, Y., Han, X., Zhu, Y., Wu, S., Wang, S., Yang, W., Wang, L. & Zhang,
J. 2023. High-density frustrated Lewis pairs based on Lamellar Nb2O5 for photocatalytic non-oxidative methane coupling. Nature Communications 14(1):
2000.
Choo, T.F., Nur Ubaidah,
S., Nurazila, M.Z. & Norhazirah, A. 2023. Electrocatalytic and
photocatalytic activities of hierarchically structured zinc oxide nanoparticles
derived from cellulose paper-precipitated hydrozincite. Ceramics
International 49: 39180-39188.
Choudhury,
B., Dey, M. & Choudhury, A. 2014. Shallow and deep trap emission and
luminescence quenching of TiO2 nanoparticles on Cu doping. Applied Nanoscience 4: 499-506.
Ciobanu, V., Galatonova, T., Braniste, T., Urbanek, P., Lehmann,
S., Hanulikova, B., Nielsch, K., Kuritka, I., Sedlarik, V. & Tiginyanu, I.
2024. Aero-TiO2 three-dimensional nanoarchitecture for
photocatalytic degradation of tetracycline. Scientific Reports 14:
31215.
Dalal, A., Mohammad,
S., Hanan, A.A., M.M. Al-Amari, Amal, B., AbdulAziz, A.A., Ebtihal,
A.M., Ezdehar, A.E., Afaf, I.E., Bhupender, K. & Awatef,
S.A. 2024. Hydrothermally synthesized Nb -doped TiO2 nanosheets
for efficient removal of methylene blue dye on photocatalytic performance. Physica
Scripta 99(8): 085915.
Devipriya, G., Ashutosh, N., Animes, K.G.
& Nageswara, R.P. 2020. Ag-doped TiO2 photocatalysts
with effective charge transfer for highly efficient hydrogen production through
water splitting. International Journal of Hydrogen Energy 45(4): 2729-2744.
Dikici,
T., Yılmaz, O. & Akalın, A. 2022. Production of Zn-doped
TiO2 film with enhanced photocatalytic activity. Journal
Austria Ceramic Society 58: 1415-1421.
Dudziak, S., Kowalska, E.,
Wang, K., Karczewski, J., Sawczak, M., Ohtani, B. & Zielińska-Jurek,
A. 2023. The interplay between dopant and a surface structure of the
photocatalyst - The case study of Nb-doped faceted TiO2. Applied
Catalysis B: Environmental 328: 122448.
Eitner,
A., Al-Kamal, A.K., Ali, M.Y., Sheikh, M.A., Schulz, C. & Wiggers, H. 2024.
Spray-flame synthesis of Nb-doped TiO2 nanoparticles and their
electrochemical performance in sodium-ion batteries. Applications in Energy
and Combustion Science 17: 100252.
Emerson, S., Ariadne, C.C., Allan, F.P. & Waldir, A.J.
2020. Transition metal (Nb and W) doped TiO2 nanostructures: The
role of metal doping in their photocatalytic activity and ozone gas-sensing
performance. Applied Surface Science 579: 152149.
Gomer, A. & Bredow, T.
2022. Effect of doping on rutile TiO2 surface stability and crystal
shapes. Chemistry Open 11(6): e202200077.
Hamed,
N.K.A., Ahmad, M.K., Hairom, N.H.H., Faridah, A.B., Mamat, M.H., Mohamed, A.,
Suriani, A.B., Soon, C.F.F., Fazli, I.M., Mokhtar, S.M. & Shimomura, M. 2022.
Photocatalytic degradation of methylene blue by flowerlike rutile-phase TiO2 film grown via hydrothermal method. Journal of Sol-Gel Science and
Technology 102: 637-648.
Irfan, F., Tanveer, M.U. & Moiz, M.A. 2022. TiO2 as an effective photocatalyst mechanisms, applications, and dopants: A review. European
Physical Journal B 95: 184.
Jiang,
D., Otitoju, T.A., Ouyang, Y., Shoparwe, N.F., Wang, S., Zhang, A. & Li, S.
2021. A review on metal ions modified TiO2 for photocatalytic
degradation of organic pollutants. Catalysts 11(9): 1039.
Jin, C., Liu, B., Lei, Z. & Sun, J. 2015. Structure
and photoluminescence of the TiO2 films grown by atomic layer
deposition using tetrakis-dimethylamino titanium and ozone. Nanoscale
Research Letters 10: 95.
Karuppiah, N., Suriyan, R., Christy,
G.D., Raja, K., Vanitha, U., Nilesh, P.B., Nikhil,
M.P., Thangavel, M., Lakshmanan, A.D. & Chandrabose, U.
2025. Photocatalytic advancements and applications of titanium dioxide
(TiO₂): Progress in biomedical, environmental, and energy sustainability. Next Research 2(1): 100180.
Khezami, L., Lounissi, I., Hajjaji, A., Guesmi, A., Assadi, A.A. &
Bessais, B. 2021. Synthesis and characterization of TiO2 nanotubes
(TiO2-NTs) decorated with platine nanoparticles (Pt-NPs): Photocatalytic
performance for simultaneous removal of microorganisms and volatile organic
compounds. Materials 14(23): 7341.
Kholief, M.G., Hesham, A.E.L., Hashem, F.S. & Mohamed, F.M. 2024.
Synthesis and utilization of titanium dioxide nano particle (TiO2NPs)
for photocatalytic degradation of organics. Scientific Reports 14: 11327.
Kubiak, A. 2023.
Comparative study of TiO2–Fe3O4 photocatalysts
synthesized by conventional and microwave methods for metronidazole
removal. Scientific Reports 13: 12075.
Khlyustova, A., Sirotkin,
N., Kusova, T., Kraev, A., Titov, V. & Agafonov, A. 2020. Doped TiO2: The
effect of doping elements on photocatalytic activity. Material
Advances 1(5): 1193-1201.
Leite, E.R., Vila, C.,
Bettini, J. & Longo, E. 2006. Synthesis of niobia nanocrystals with
controlled morphology. Physic Chemistry B 110(37): 18088-18090.
Li, T., Wang, Z., Shi, Y. & Yao, X. 2022.
Preparation and performance of carbon-based Ce-Mn catalysts for efficient
degradation of acetone at low temperatures. International Journal
Environmental Resources Public Health 19(24): 16879.
Li, Y.H., Yang, S.H., Yuan,
C.S., Shen, H. & Hung, C.H. 2023.
Photocatalytic degradation of gaseous acetone by photocatalysts with visible
light and their potential applications in painting. Aerosol Air Quality
Research 23: 220358.
Li, Y., Zhang, M., Guo,
M. & Wang, X. 2010. Hydrothermal growth of well-aligned
TiO2 nanorod arrays: Dependence of morphology upon hydrothermal
reaction conditions. Rare Metals 29: 286-291.
Liccardo, L., Bordin, M.,
Sheverdyaeva, P.M., Belli, M., Moras, P., Vomiero, A. & Moretti, E. 2023.
Surface defect engineering in colored TiO2 hollow spheres toward
efficient photocatalysis. Advanced Functional Materials 33(22): 2212486.
Liu, P., Chen, L., Tang, H., Shao, J., Lin, F., He, Y., Zhu, Y.
& Wang, Z. 2022. Low temperature ozonation of
acetone by transition metals derived catalysts: activity and sulfur/water
resistance. Catalysts 12(10): 1090.
Napat,
L., Natpichan, P., Kittapas, C., Thirawit, S., Prowpatchara, C., Panpailin, S.,
Pattaraporn, K.L. & Sira, S. 2021. One-step hydrothermal synthesis of
precious metal-doped titanium dioxide−graphene oxide composites for
photocatalytic conversion of CO2 to ethanol. ACS Omega 6:
35769-35779.
Natarajan, T.S., Mozhiarasi, V. &
Tayade, R.J. 2021. Nitrogen doped titanium dioxide (N-TiO2): Synopsis
of synthesis methodologies, doping mechanisms, property evaluation and visible
light photocatalytic applications. Photochemical 1(3):
371-410.
Nur Syuhada, I., Wai,
L., Daud, M., Siti, H.A. & Hadi, N. 2020. A
critical review of metal-doped TiO2 and its structure physical
properties photocatalytic activity relationship in hydrogen production. International Journal of Hydrogen Energy 45(53): 28553-28565.
Perciani
de Moraes, N., Torezin, F.A., Jucá Dantas, G.V., Martins de Sousa, J.G., Valim,
R.B., da Silva Rocha, R., Landers, R., Pinto da Silva, M.L.C. & Rodrigues, L.A. 2020. TiO2/Nb2O5/carbon
xerogel ternary photocatalyst for efficient degradation of 4-chlorophenol under
solar light irradiation. Ceramics International 46(10) Part A:
14505-14515.
Piatkowska, A., Janus, M., Szymanski, K. & Mozia, S.
2021. C-,N- and S-Doped TiO2 photocatalysts: A review. Catalysts 11(1):
144.
Prabhakarrao,
N., Siva Rao, T., Lakshmi, K.V.D., Divya, G., Jaishree, G., Manga
Raju, I. & Abdul Alim, S. 2021. Enhanced photocatalytic performance of Nb
doped TiO2/reduced graphene oxide nanocomposites over rhodamine B
dye under visible light illumination. Sustainable Environment Research 31:
37.
Prathan, A., Sanglao, J.,
Wang, T., Bhoomanee, C., Ruankham, P., Gardchareon, A. & Wongratanaphisan,
D. 2020. Controlled structure and growth mechanism behind hydrothermal growth
of TiO2 nanorods. Science Reports 10: 8065.
Racovita, A.D. 2022. Titanium dioxide: Structure, impact,
and toxicity. International Journal Environmental Research Public
Health 19(9): 5681.
Rettenmaier,
K. & Berger, T. 2021. Impact of nanoparticle consolidation on charge
separation efficiency in anatase TiO2 films. Frontier Chemistry 9: 772116.
Roskaric,
M., Zerjav, G., Zavasnik, J., Finsgar, M. & Pintar, A. 2025. Effect of TiO2 morphology on the properties and photocatalytic activity of g-C3N4/TiO2 nanocomposites under visible-light illumination. Molecules 30(3): 460.
Sharma,
R., Sarkar, A. & Jha, R. 2020. Sol-gel–mediated synthesis of TiO2 nanocrystals: Structural, optical, and electrochemical properties. International
Journal Applied Ceramic Technology 17: 1400-1409.
Sheetal, O.D. & Pragati, T. 2010. Kinetics of
photocatalytic degradation of methylene blue in a TiO2 slurry
reactor. Research Journal of Chemistry and Environment 14(4): 9-13.
Stefan, M.I. & Bolton, J.R.
1999. Reinvestigation of the acetone degradation mechanism in dilute
aqueous solution by the UV/H2O2 process. Environmental
Science & Technology 33(6): 870-873.
Synthiya, T., Thilagavathi, R., Uthrakumar, M., Waqas, A. & Kaviyarasu,
K. 2025. Synthesis and characterization of pure TiO2 and TiO2-Doped
Bi2O3 nanocomposites for electrochemical applications. Luminescence 40(4): e70161.
Tarutani, N., Kato, R.,
Uchikoshi, T. & Ishigaki, T. 2021. Spontaneously formed
gradient chemical compositional structures of niobium doped titanium dioxide
nanoparticles enhance ultraviolet- and visible-light photocatalytic
performance. Scientific Reports 11: 15236.
Velardi, L., Scrimieri, L., Serra, A., Manno, D. &
Calcagnile, L. 2020. Effect of temperature on the physical, optical and
photocatalytic properties of TiO2 nanoparticles. SN Applied
Science 2: 707.
Wafi, A., Roza, L., Timuda, G.E., Demas, A., Deni,
S.K., Nono, D., Nurfina, Y., Erzsebet, S.B., Otto, H. & Mohammad, M.K. 2024.
N-doped TiO2 for photocatalytic degradation of colorless and
colored organic pollutants under visible light irradiation. Transition
Metal Chemistry 49: 305-317.
Wang,
L. & Yu, J. 2023.
Chapter 1 - Principles of photocatalysis. In Interface
Science and Technology, edited by
Yu, J., Zhang, L., Wang, L. & Zhu, B. Elsevier 35: 1-52.
Wei,
R., Shi, Y., Zhang, S., Diao, X., Ya, Z., Xu, D., Zheng, Y., Yan, C., Cao, K.,
Ma, Y. & Ji, N. 2025. Photocatalytic upgrading of plastic waste into
high-value-added chemicals and fuels: Advances and perspectives. ACS
Sustainable Chemistry Engineering 13(7): 2615-2632.
Wrana,
D., Gensch, T., Jany, B.R., Cieślik, K., Rodenbücher, C., Cempura, G.,
Kruk, A. & Krok, F. 2021. Photoluminescence imaging of defects in TiO2:
The influence of grain boundaries and doping on charge carrier dynamics. Applied
Surface Science 69: 150909.
Yang,
X., Min, Y., Li, S., Wang, D., Mei, Z., Liang, J. & Pan, F. 2018.
Conductive Nb-doped TiO2 thin films with the whole visible
absorption to degrade pollutants. Catalyst Science Technology 8(5): 1357-1365.
Yang, J., Zhang, X., Wang, C., Sun, P., Wang, L., Xia,
B. & Liu, Y. 2012. Solar photocatalytic activities of porous Nb-doped
TiO2 microspheres prepared by ultrasonic spray pyrolysis. Solid
State Sciences 14(1): 139-144.
Yeoh, J.Z., Chan, P.L., Pung, S.Y., Ramakrishnan, S.,
Joseph, C.G. & Chen, C.Y. 2024. Designing a visible light driven TiO2-based
photocatalyst by doping and co-doping with niobium (Nb) and boron (B). Bulletin
of Chemical Reaction Engineering & Catalysis 19(2): 285-299.
Yin,
M., Liu, X., Hu, L., Xu, L. & He, J. 2016. Effects of Nb doping on
microstructure and photocatalytic properties of TiO2 thin film. Desalination
and Water Treatment 57(15): 6910-6915.
Zhang, D., Yang, M. & Dong, S. 2015. Improving
the photocatalytic activity of TiO2 through reduction. RSC Advances 5(45): 35661-35666.
*Pengarang
untuk surat-menyurat; email: masliana@nm.gov.my