Sains Malaysiana 54(7)(2025): 1823-1834

http://doi.org/10.17576/jsm-2025-5407-15

 

Peningkatan Prestasi Fotomangkin dalam Degradasi Aseton menggunakan Filem Nipis Nanorod x-TiNb

(Enhanced Photocatalytic Performance in Acetone Degradation using x-TiNb Nanorods Thin Films)

 

MASLIANA MUSLIMIN1,* & MOHAMMAD HAFIZUDDIN HJ JUMALI2

 

1Bahagian Teknologi Industri, Agensi Nuklear Malaysia, Bangi, 43000 Kajang, Selangor, Malaysia

2Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Diserahkan: 21 Mac 2025/Diterima: 19 Mei 2025

 

Abstrak

Penyelidikan terhadap degradasi aseton menggunakan fotomangkin TiO2 nanorod (TiO2NR) terdop Nb telah dijalankan dalam kajian ini. Filem nipis  TiO2NR terdop Nb (x-TiNb)  dengan kepekatan berbeza; 0.2 v/v%, 0.5 v/v%, 0.7 v/v%  dan 1.0 v/v%  dihasilkan menggunakan kaedah hidroterma pada suhu 170 °C selama 30 min. Analisisi FESEM menunjukkan peningkatan kepekatan Nb membawa kepada pembesaran diameter nanorod. Ini akhirnya mengakibatkan kemusnahan struktur nanorod bagi sampel pada kepekatan 1.0 v/v%. Analisis PL menunjukkan bahawa sampel x-TiNb menunjukkan keamatan puncak yang lebih rendah berbanding dengan TiO2NR, kecuali pada kepekatan 1.0 v/v%. Dapat dilihat peratus degradasi optimum bagi larutan aseton sebanyak 60% berlaku bagi sampel pada kepekatan 0.5 v/v% dalam tempoh masa 240 min. Analisis XPS menunjukkan kehadiran dua puncak utama Nb 3d5/2 dan Nb 3d3/2 masing-masing pada sekitar 207 eV dan 209.5 eV, yang mengesahkan kewujudan Nb⁵⁺ dalam struktur TiO₂. Justeru, dapat dinyatakan bahawa pendopan Nb telah membantu meningkatkan prestasi TiO2-NR sebagai fotomangkin dalam proses degradasi aseton.  

Kata kunci: Aseton; fotomangkin; Nb2O5; TiO2NR

 

Abstract

Research on acetone degradation using Nb-doped TiO2 nanorods (TiO2NR) photocatalyst was carried out in this study. Nb doped TiO2NR (x-TiNb) thin films with different concentrations; 0.2 v/v%, 0.5 v/v%, 0.7 v/v%, and 1.0 v/v% were produced using the hydrothermal method at a temperature of 170 °C for 30 min. FESEM analysis shows that increasing the concentration of Nb leads to an increase in the diameter of the nanorods. This ultimately resulted in the destruction of the nanorods structure in the sample with a concentration of 1.0 v/v%. Except for a concentration of 1.0 v/v%, PL analysis shows that the x-TiNb sample exhibits a lower peak intensity compared to TiO2NR. It can be seen that the optimal percentage of acetone solution degradation is 60% occurs for the sample with a concentration of 0.5 v/v% in 240 min duration time. There was an increment in binding energy of Ti 2p for this sample by XPS analysis, confirming the incorporation of Nb into the TiO2 crystal plane. Thus, it can be stated that Nb doping has improved the performance of TiO2NR as a photocatalyst in the acetone degradation process.

Keywords: Acetone; Nb2O5; photocatalyst; TiO2NR

 

RUJUKAN

Akhter, P., Arshad, A., Saleem, A. & Hussain, M. 2022. Recent development in non-metal-doped titanium dioxide photocatalysts for different dyes degradation and the study of their strategic factors: A review. Catalysts 12(11): 1331.

Ali, S., Razzaq, A., Kim, H. & In, S.I. 2022. Activity, selectivity, and stability of earth-abundant CuO/Cu2O/CuO-based photocatalysts toward CO2 reduction. Chemical Engineering Journal 429: 131579.

Ben Jemaa, I., Chaabouni, F., Presmanes, L., Thimont, Y., Abaab, M., Barnabe, A. & Tailhades, P. 2016. Structural, optical and electrical investigations on Nb doped TiO2 radio-frequency sputtered thin films from a powder target. Journal Material Science: Material Electron 27: 13242-13248.

Bikash, S., Sujit, K.D. & Bimal, K.S. 2016. Photoluminescence and photocatalytic activities of Ag/ZnO metal-semiconductor heterostructure. Journal of Physics: Conference Series 765: 012023.

Bbumba, S., Kigozi, M., Karume, I., Kisiki Nsamba, H., Tochukwu Arum, C., Kiganda, I., Maximillian, K., Nazziwa, R.A., Ssekatawa, J., Yikii, C.L. & Ntale, M. 2024. Enhanced photocatalytic degradation of methylene blue and methyl orange dyes via transition metal-doped titanium dioxide nanoparticles. Asian Journal of Chemical Sciences 14(4): 17-41

Caique, P., Machado, D.O., Inara, F.F., Konrad, K., Jorg, E.D., Marcelo, M.V. & Miriam, C.S.A. 2022. TiO2-Graphene oxide nanocomposite membranes: A review. Separation and Purification Technology 280: 119836.

Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P., Zhang, R., Wang, L., Liu, H., Liu, Y. & Ruan, R. 2020. Photocatalytic degradation of organic pollutants using TiO2-based   photocatalysts: A review. Journal of Cleaner Production 268: 121725.

Chen, Y. & Yu, Q. 2021. Research progress on degradation of VOCs by metal ions doped titanium dioxide nanoparticles. Journal Physics Conference Series 2021: 012063.

Chen, Z., Ye, Y., Feng, X., Wang, Y., Han, X., Zhu, Y., Wu, S., Wang, S., Yang, W., Wang, L. & Zhang, J. 2023. High-density frustrated Lewis pairs based on Lamellar Nb2O5 for photocatalytic non-oxidative methane coupling. Nature Communications 14(1): 2000.

Choo, T.F., Nur Ubaidah, S., Nurazila, M.Z. & Norhazirah, A. 2023. Electrocatalytic and photocatalytic activities of hierarchically structured zinc oxide nanoparticles derived from cellulose paper-precipitated hydrozincite. Ceramics International 49: 39180-39188.

Choudhury, B., Dey, M. & Choudhury, A. 2014. Shallow and deep trap emission and luminescence quenching of TiO2 nanoparticles on Cu doping. Applied  Nanoscience 4: 499-506.

Ciobanu, V., Galatonova, T., Braniste, T., Urbanek, P., Lehmann, S., Hanulikova, B., Nielsch, K., Kuritka, I., Sedlarik, V. & Tiginyanu, I. 2024. Aero-TiO2 three-dimensional nanoarchitecture for photocatalytic degradation of tetracycline. Scientific Reports 14: 31215.

Dalal, A., Mohammad, S., Hanan, A.A., M.M. Al-Amari,  Amal, B.,  AbdulAziz, A.A., Ebtihal, A.M., Ezdehar, A.E., Afaf, I.E., Bhupender, K. & Awatef, S.A. 2024. Hydrothermally synthesized Nb -doped TiO2 nanosheets for efficient removal of methylene blue dye on photocatalytic performance. Physica Scripta 99(8): 085915.

Devipriya, G., Ashutosh, N., Animes, K.G. & Nageswara, R.P. 2020. Ag-doped TiO2 photocatalysts with effective charge transfer for highly efficient hydrogen production through water splitting. International Journal of Hydrogen Energy  45(4): 2729-2744.

Dikici, T., Yılmaz, O. & Akalın, A.  2022. Production of Zn-doped TiO2 film with enhanced photocatalytic activity. Journal Austria Ceramic Society 58: 1415-1421.

Dudziak, S., Kowalska, E., Wang, K., Karczewski, J., Sawczak, M., Ohtani, B. & Zielińska-Jurek, A. 2023. The interplay between dopant and a surface structure of the photocatalyst - The case study of Nb-doped faceted TiO2. Applied Catalysis B: Environmental 328: 122448.

Eitner, A., Al-Kamal, A.K., Ali, M.Y., Sheikh, M.A., Schulz, C. & Wiggers, H. 2024. Spray-flame synthesis of Nb-doped TiO2 nanoparticles and their electrochemical performance in sodium-ion batteries. Applications in Energy and Combustion Science 17: 100252.

Emerson, S., Ariadne, C.C., Allan, F.P. & Waldir, A.J. 2020. Transition metal (Nb and W) doped TiO2 nanostructures: The role of metal doping in their photocatalytic activity and ozone gas-sensing performance. Applied Surface Science 579: 152149.

Gomer, A. & Bredow, T. 2022. Effect of doping on rutile TiO2 surface stability and crystal shapes. Chemistry Open 11(6): e202200077.

Hamed, N.K.A., Ahmad, M.K., Hairom, N.H.H., Faridah, A.B., Mamat, M.H., Mohamed, A., Suriani, A.B., Soon, C.F.F., Fazli, I.M., Mokhtar, S.M. & Shimomura, M. 2022. Photocatalytic degradation of methylene blue by flowerlike rutile-phase TiO2 film grown via hydrothermal method. Journal of Sol-Gel Science and Technology 102: 637-648.

Irfan, F., Tanveer, M.U. & Moiz, M.A. 2022. TiO2 as an effective photocatalyst mechanisms, applications, and dopants: A review. European Physical Journal B 95: 184.

Jiang, D., Otitoju, T.A., Ouyang, Y., Shoparwe, N.F., Wang, S., Zhang, A. & Li, S. 2021. A review on metal ions modified TiO2 for photocatalytic degradation of organic pollutants. Catalysts 11(9): 1039.

Jin, C., Liu, B., Lei, Z. & Sun, J. 2015. Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone. Nanoscale Research Letters 10: 95.

Karuppiah, N., Suriyan, R., Christy, G.D., Raja, K., Vanitha, U., Nilesh, P.B., Nikhil, M.P., Thangavel, M., Lakshmanan, A.D. & Chandrabose, U. 2025. Photocatalytic advancements and applications of titanium dioxide (TiO₂): Progress in biomedical, environmental, and energy sustainability. Next Research 2(1): 100180.

Khezami, L., Lounissi, I., Hajjaji, A., Guesmi, A., Assadi, A.A. & Bessais, B. 2021. Synthesis and characterization of TiO2 nanotubes (TiO2-NTs) decorated with platine nanoparticles (Pt-NPs): Photocatalytic performance for simultaneous removal of microorganisms and volatile organic compounds. Materials 14(23): 7341.

Kholief, M.G., Hesham, A.E.L., Hashem, F.S. & Mohamed, F.M. 2024. Synthesis and utilization of titanium dioxide nano particle (TiO2NPs) for photocatalytic degradation of organics. Scientific Reports 14: 11327.

Kubiak, A. 2023. Comparative study of TiO2–Fe3O4 photocatalysts synthesized by conventional and microwave methods for metronidazole removal. Scientific Reports 13: 12075.

Khlyustova, A., Sirotkin, N., Kusova, T., Kraev, A., Titov, V. & Agafonov, A. 2020. Doped TiO2: The effect of doping elements on photocatalytic activity. Material Advances 1(5): 1193-1201.  

Leite, E.R., Vila, C., Bettini, J. & Longo, E. 2006. Synthesis of niobia nanocrystals with controlled morphology. Physic Chemistry B 110(37): 18088-18090.

Li, T., Wang, Z., Shi, Y. & Yao, X. 2022. Preparation and performance of carbon-based Ce-Mn catalysts for efficient degradation of acetone at low temperatures. International Journal Environmental Resources Public Health 19(24): 16879.

Li, Y.H., Yang, S.H., Yuan, C.S., Shen, H. & Hung, C.H. 2023. Photocatalytic degradation of gaseous acetone by photocatalysts with visible light and their potential applications in painting. Aerosol Air Quality Research 23: 220358.

Li, Y., Zhang, M., Guo, M. & Wang, X. 2010. Hydrothermal growth of well-aligned TiO2 nanorod arrays: Dependence of morphology upon hydrothermal reaction conditions. Rare Metals 29: 286-291.

Liccardo, L., Bordin, M., Sheverdyaeva, P.M., Belli, M., Moras, P., Vomiero, A. & Moretti, E. 2023. Surface defect engineering in colored TiO2 hollow spheres toward efficient photocatalysis. Advanced Functional Materials 33(22): 2212486.

Liu, P., Chen, L., Tang, H., Shao, J., Lin, F., He, Y., Zhu, Y. & Wang, Z. 2022. Low temperature ozonation of acetone by transition metals derived catalysts: activity and sulfur/water resistance. Catalysts 12(10): 1090.

Napat, L., Natpichan, P., Kittapas, C., Thirawit, S., Prowpatchara, C., Panpailin, S., Pattaraporn, K.L. & Sira, S. 2021. One-step hydrothermal synthesis of precious metal-doped titanium dioxide−graphene oxide composites for photocatalytic conversion of CO2 to ethanol. ACS Omega 6: 35769-35779.

Natarajan, T.S., Mozhiarasi, V. & Tayade, R.J. 2021. Nitrogen doped titanium dioxide (N-TiO2): Synopsis of synthesis methodologies, doping mechanisms, property evaluation and visible light photocatalytic applications. Photochemical 1(3): 371-410.

Nur Syuhada, I., Wai, L., Daud, M., Siti, H.A. & Hadi, N. 2020. A critical review of metal-doped TiO2 and its structure physical properties photocatalytic activity relationship in hydrogen production. International Journal of Hydrogen Energy 45(53): 28553-28565.

Perciani de Moraes, N., Torezin, F.A., Jucá Dantas, G.V., Martins de Sousa, J.G., Valim, R.B., da Silva Rocha, R., Landers, R., Pinto da Silva, M.L.C. & Rodrigues, L.A. 2020. TiO2/Nb2O5/carbon xerogel ternary photocatalyst for efficient degradation of 4-chlorophenol under solar light irradiation. Ceramics International 46(10) Part A: 14505-14515.

Piatkowska, A., Janus, M., Szymanski, K. & Mozia, S. 2021. C-,N- and S-Doped TiO2 photocatalysts: A review. Catalysts 11(1): 144.

Prabhakarrao, N., Siva Rao, T., Lakshmi, K.V.D., Divya, G., Jaishree, G., Manga Raju, I. & Abdul Alim, S. 2021. Enhanced photocatalytic performance of Nb doped TiO2/reduced graphene oxide nanocomposites over rhodamine B dye under visible light illumination. Sustainable Environment Research 31: 37.

Prathan, A., Sanglao, J., Wang, T., Bhoomanee, C., Ruankham, P., Gardchareon, A. & Wongratanaphisan, D. 2020. Controlled structure and growth mechanism behind hydrothermal growth of TiO2 nanorods. Science Reports 10: 8065.

Racovita, A.D. 2022. Titanium dioxide: Structure, impact, and toxicity. International Journal Environmental Research Public Health 19(9): 5681.

Rettenmaier, K. & Berger, T. 2021. Impact of nanoparticle consolidation on charge separation efficiency in anatase TiO2 films. Frontier Chemistry 9: 772116.

Roskaric, M., Zerjav, G., Zavasnik, J., Finsgar, M. & Pintar, A. 2025. Effect of TiO2 morphology on the properties and photocatalytic activity of g-C3N4/TiO2 nanocomposites under visible-light illumination. Molecules 30(3): 460.

Sharma, R., Sarkar, A. & Jha, R. 2020. Sol-gel–mediated synthesis of TiO2 nanocrystals: Structural, optical, and electrochemical properties. International Journal Applied Ceramic Technology 17: 1400-1409.

Sheetal, O.D. & Pragati, T. 2010. Kinetics of photocatalytic degradation of methylene blue in a TiO2 slurry reactor. Research Journal of Chemistry and Environment 14(4): 9-13.

Stefan, M.I. & Bolton, J.R. 1999. Reinvestigation of the acetone degradation mechanism in dilute aqueous solution by the UV/H2O2 process. Environmental Science & Technology 33(6): 870-873.

Synthiya, T., Thilagavathi, R., Uthrakumar, M., Waqas, A. & Kaviyarasu, K. 2025. Synthesis and characterization of pure TiO2 and TiO2-Doped Bi2O3 nanocomposites for electrochemical applications. Luminescence 40(4): e70161.

Tarutani, N., Kato, R., Uchikoshi, T. & Ishigaki, T. 2021. Spontaneously formed gradient chemical compositional structures of niobium doped titanium dioxide nanoparticles enhance ultraviolet- and visible-light photocatalytic performance. Scientific Reports 11: 15236.

Velardi, L., Scrimieri, L., Serra, A., Manno, D. & Calcagnile, L. 2020. Effect of temperature on the physical, optical and photocatalytic properties of TiO2 nanoparticles. SN Applied Science 2: 707.

Wafi, A., Roza, L., Timuda, G.E., Demas, A., Deni, S.K., Nono, D., Nurfina, Y., Erzsebet, S.B., Otto, H. & Mohammad, M.K. 2024. N-doped TiO2 for photocatalytic degradation of colorless and colored organic pollutants under visible light irradiation. Transition Metal Chemistry 49: 305-317.

Wang, L.  & Yu, J. 2023. Chapter 1 - Principles of photocatalysis. In Interface Science and Technology, edited by Yu, J., Zhang, L., Wang, L. & Zhu, B. Elsevier 35: 1-52.

Wei, R., Shi, Y., Zhang, S., Diao, X., Ya, Z., Xu, D., Zheng, Y., Yan, C., Cao, K., Ma, Y. & Ji, N. 2025. Photocatalytic upgrading of plastic waste into high-value-added chemicals and fuels: Advances and perspectives. ACS Sustainable Chemistry Engineering 13(7): 2615-2632.

Wrana, D., Gensch, T., Jany, B.R., Cieślik, K., Rodenbücher, C., Cempura, G., Kruk, A. & Krok, F. 2021. Photoluminescence imaging of defects in TiO2: The influence of grain boundaries and doping on charge carrier dynamics. Applied Surface Science 69: 150909.

Yang, X., Min, Y., Li, S., Wang, D., Mei, Z., Liang, J. & Pan, F. 2018. Conductive Nb-doped TiO2 thin films with the whole visible absorption to degrade pollutants. Catalyst Science Technology 8(5): 1357-1365.

Yang, J., Zhang, X., Wang, C., Sun, P., Wang, L., Xia, B. & Liu, Y. 2012. Solar photocatalytic activities of porous Nb-doped TiO2 microspheres prepared by ultrasonic spray pyrolysis. Solid State Sciences 14(1): 139-144.

Yeoh, J.Z., Chan, P.L., Pung, S.Y., Ramakrishnan, S., Joseph, C.G. & Chen, C.Y. 2024. Designing a visible light driven TiO2-based photocatalyst by doping and co-doping with niobium (Nb) and boron (B). Bulletin of Chemical Reaction Engineering & Catalysis 19(2): 285-299.

Yin, M., Liu, X., Hu, L., Xu, L. & He, J. 2016. Effects of Nb doping on microstructure and photocatalytic properties of TiO2 thin film. Desalination and Water Treatment 57(15): 6910-6915.

Zhang, D., Yang, M. & Dong, S. 2015. Improving the photocatalytic activity of TiO2 through reduction. RSC Advances 5(45): 35661-35666.

 

*Pengarang untuk surat-menyurat; email: masliana@nm.gov.my

 

 

 

 

 

 

 

           

sebelumnya